
/*
 AnalogReadSerial

 Reads an analog input on pin 0, prints the result to the Serial
Monitor.
 Graphical representation is available using Serial Plotter (Tools >
Serial Plotter menu).
 Attach the center pin of a potentiometer to pin A0, and the outside
pins to +5V and ground.

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/AnalogReadSerial
*/
const int trigPin = 11; //connects to the trigger pin on the
distance sensor
const int echoPin = 12; //connects to the echo pin on the
distance sensor
// the setup routine runs once when you press reset:

float distance = 0; //stores the distance measured by
the distance sensor

int speakerPin = 10; //the pin that buzzer is connected
to

void setup()
{
 Serial.begin (9600); //set up a serial connection with the
computer

 pinMode(trigPin, OUTPUT); //the trigger pin will output pulses of
electricity
 pinMode(echoPin, INPUT); //the echo pin will measure the duration
of pulses coming back from the distance sensor
 pinMode(speakerPin, OUTPUT); //set the output pin for the speaker

}

// the loop routine runs over and over again forever:

void loop() {

 distance = getDistance(); //variable to store the distance
measured by the sensor

 Serial.print(distance); //print the distance that was measured
 Serial.println(" in"); //print units after the distance

 // read the input on analog pin 0:
 int sensorValue = analogRead(A0); // 0 - 1023 (0 to 5V)

 // make brightness change according to sensorValue
 // analogWrite(9, sensorValue/4); // 0 - 255 (0 to 5V)
 // better way:
 // brightness = map(sensorValue, 0, 890);
 // 0,255)
 // print out the value you read:

 Serial.print(sensorValue);
 Serial.print(" & ");
 Serial.println(distance);

 delay(500); // delay in between reads for stability
//
 if (distance<=1) {

 play('g', 2); //ha
 play('g', 1); //ppy
 play('a', 4); //birth
 play('g', 4); //day
 play('C', 4); //to
 play('b', 4); //you

 play(' ', 2); //pause for 2 beats

 play('g', 2); //ha
 play('g', 1); //ppy
 play('a', 4); //birth
 play('g', 4); //day
 play('D', 4); //to
 play('C', 4); //you

 play(' ', 2); //pause for 2 beats

 play('g', 2); //ha
 play('g', 1); //ppy
 play('G', 4); //birth
 play('E', 4); //day
 play('C', 4); //dear
 play('b', 4); //your
 play('a', 6); //name

 play(' ', 2); //pause for 2 beats

 play('F', 2); //ha
 play('F', 1); //ppy

 play('E', 4); //birth
 play('C', 4); //day
 play('D', 4); //to
 play('C', 6); //you

 }
 Serial.print(sensorValue);
 Serial.print(" & ");
 Serial.println(distance);

 delay(500); // delay in between reads for stability
}

 void play(char note, int beats)
{
 int numNotes = 14; // number of notes in our note and frequency
array (there are 15 values, but arrays start at 0)

 //Note: these notes are C major (there are no sharps or flats)

 //this array is used to look up the notes
 char notes[] = { 'c', 'd', 'e', 'f', 'g', 'a', 'b', 'C', 'D', 'E',
'F', 'G', 'A', 'B', ' '};
 //this array matches frequencies with each letter (e.g. the 4th note
is 'f', the 4th frequency is 175)
 int frequencies[] = {131, 147, 165, 175, 196, 220, 247, 262, 294,
330, 349, 392, 440, 494, 0};

 int currentFrequency = 0; //the frequency that we find when we
look up a frequency in the arrays
 int beatLength = 150; //the length of one beat (changing this will
speed up or slow down the tempo of the song)

 //look up the frequency that corresponds to the note
 for (int i = 0; i < numNotes; i++) // check each value in notes
from 0 to 14
 {
 if (notes[i] == note) // does the letter passed to the
play function match the letter in the array?
 {
 currentFrequency = frequencies[i]; // Yes! Set the current
frequency to match that note
 }
 }

 //play the frequency that matched our letter for the number of beats
passed to the play function

 tone(speakerPin, currentFrequency, beats * beatLength);
 delay(beats * beatLength); //wait for the length of the tone so
that it has time to play
 delay(50); //a little delay between the notes makes
the song sound more natural

}

//RETURNS THE DISTANCE MEASURED BY THE HC-SR04 DISTANCE SENSOR
float getDistance()
{
 float echoTime; //variable to store the time it
takes for a ping to bounce off an object
 float calculatedDistance; //variable to store the distance
calculated from the echo time

 //send out an ultrasonic pulse that's 10ms long
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);

 echoTime = pulseIn(echoPin, HIGH); //use the pulsein command to
see how long it takes for the
 //pulse to bounce back to the sensor

 calculatedDistance = echoTime / 148.0; //calculate the distance of
the object that reflected the pulse (half the bounce time multiplied
by the speed of sound)

 return calculatedDistance; //send back the distance
that was calculated
}

